NUCLEOPHILIC RING OPENING OF LACTONES VIA S_N2-TYPE REACTION WITH UNCOMPLEXED PHENYL SELENIDE ANION Dennis Liotta* and Hector Santiesteban

Department of Chemistry, Emory University, Atlanta, Georgia 30322 (Received in USA 6 Seltember 1977; received in UK for publication 24 October 1977) Recently, we have been interested in using phenyl selenide anion as the key reagent for the conversion of lactones to ω-vinylcarboxylic acids.¹ Conceptually, our approach to this problem is shown in Scheme I.

Scheme I

The choice of phenyl selenide anion as the ring-opening reagent seemed particularly attractive for two reasons. First, a simple lactone possesses two sites which are potentially reactive to nucleophiles, the carbonyl carbon and the carbinolic carbon. Based on Hard Soft Acid Base Theory, a soft nucleophile, such as phenyl selenide anion, should show a preference for S_N^2 -type attack at the carbinolic carbon and thus produce an ω -phenylselenylcarboxylic acid.² Second, the conversion of the ω -phenylselenylcarboxylic acid to the corresponding ω -vinylcarboxylic acid via an oxidation/elimination sequence should prove to be a facile, high yield process.³

As reported in the previous communication we have developed a new method for generating uncomplexed phenyl selenide anion, $\underline{1}$ (see Scheme II).

Scheme II

PhSeSePh + Na^o
$$\xrightarrow{\text{THF}}$$
 Na⁺ $\xrightarrow{\text{SePh}}$ $\xrightarrow{\text{THF}}$ PhSeH + NaH
 $\underline{2}$ $\underline{1}$ $\underline{3}$

If $\underline{1}$ is solubilized by the addition of either 1-2 ml of hexamethylphosphoramide (HMPA) or 0.05 molar equivalents of 18-Crown-6, nucleophilic ring opening of a variety of primary lactones can be effected in high yield under very mild conditions. A listing of the lactones studied is

4369

Substrate	Compound Number	Cation Solvator	Temp. (^O C)	Time ^a (hrs.)	Yield ^b
<u> </u>	<u>4</u>	НМРА	67°	3	79%
		18-Crown-6	25°	3	85%
<u>Å</u>	5	HMPA	67°	3	85%
Ŭ		18-Crown-6	25°	3	85%
	<u>6</u>	нмра	67°	4	75%
Ajo	2	нмра	67°	4	80%
[°]	<u>8</u>	HMPA 18-Crown-6	67° 25%	6	20% 0%
	<u>9</u>	HMPA 18-Crown-6	67° 25°	20 20	08 08
Ś.	<u>10</u>	HMPA 18-Crown-6	67° 25°	20 20	0% 0%

Table I. The Reaction of Uncomplexed Phenyl Selenide Anion with Lactones.

a % yields refer to isolated yields.

^b Reaction times have not been optimized.

given in Table I. The experimental procedure for this process is the same as the procedure given in the previous communication for the alkyl-oxygen cleavage of esters and thus will not be repeated here.

With the exception of $\underline{8}$, all of the substrates yielded essentially equivalent results regardless of whether HMPA in refluxing THF or 18-Crown-6 in ambient THF was employed as the cation solubilizer. The differences observed with <u>8</u> probably result because the preferred conformations of the seven-membered ring lactone are less suitable for S_N^2 -type displacement than their six- and five-membered ring counterparts. The higher reaction temperature (67.° vs. 25°) could increasingly populate the less stable conformation required for efficient displacement and thus increase the reaction rate. Consistent with this, Scarborough and Smith have cleaved <u>8</u> with phenyl selenide anion in 90% yield at $110^{\circ}-120^{\circ}C$.⁵

It is also of interest to note that both <u>9</u> and <u>10</u> can be recovered unchanged even after exposure to the reaction conditions for periods as long as 20 hours. This was somewhat surprising in that, as the reaction proceeds, a copious precipitate is formed. This may be interpreted in terms of an initial acyl-oxygen cleavage by phenyl selenide anion forming a ω -hydroxyphenylselenyl ester, followed by subsequent reclosure to the lactone during work-up.⁶

Our initial attempts at converting 5-phenylselenylvaleric acid, <u>11</u>, to 4-pentenoic acid, <u>12</u>, via oxidative elimination with hydrogen peroxide provided us with an interesting result. The only product isolated from the oxidation of <u>11</u> was valerolactone, <u>5</u>. Thus, hydrogen peroxide apparently oxidizes <u>11</u> to an intermediate selenoxide, <u>13</u>, which does not rapidly undergo <u>cis</u> elimination.⁷

Instead selenoxide <u>13</u> undergoes a type of [2,3]-sigmatropic rearrangement to yield <u>2</u>.⁸ However, if the ω -phenylselenyl carboxylic acid is esterified either with boron trifluoride etherate in refluxing methanol or ethereal diazomethane, oxidation to the corresponding selenoxide proceeds in a straightforward fashion.⁹ Although many different experimental procedures for effecting the thermal elimination of these selenoxides have been investigated, the best results were achieved using the method described by Scarborough and Smith.⁴ Utilizing this method, yields of 60-75% could be consistently obtained for the ω -vinylcarboxylic esters derived from <u>4</u>, <u>5</u>, <u>6</u>, <u>7</u> and 8.

In summary, uncomplexed phenyl selenide anion has been shown to be an effective reagent for opening five- and six-membered ring primary lactones via an S_N^2 -type cleavage. Further studies involving the use of uncomplexed phenyl selenide anion, as well as other highly-reactive selenium anions, will be the subject of future reports.

References

- There is some literature precedent for effecting lactone ring openings with a number of selenium anions. For some examples, see: L. -B. Agenas, <u>Arkiv. fur Kemi, 24</u>, 415 (1965); <u>ibid.</u>, 573 (1965); W. H. H. Gunther, <u>J. Org. Chem.</u>, <u>31</u>, 1202 (1966); K. Sindelar, J. Metysova and M. Protiva, <u>Coll. Czech. Chem. Commun.</u>, <u>34</u>, 3801 (1969).
- (2) T. S. Ho, <u>Chem. Rev.</u>, <u>75</u>, 1 (1975).
- (3) K. B. Sharpless and R. F. Lauer, <u>J. Amer. Chem. Soc.</u>, <u>95</u>, 2697 (1973); H. J. Reich, I. L. Reich and J. M. Renga, <u>J. Amer. Chem. Soc.</u>, <u>95</u>, 5813 (1973).
- (4) All compounds gave satisfactory i.r., n.m.r., m.s. and C, H analysis.
- (5) See accompanying paper. We sincerely thank Prof. Amos Smith for providing us with a preprint of his work prior to publication.
- (6) The cleavage of isopropyl benzoate by phenyl selenide anion may also proceed by acyloxygen cleavage. See previous communication.
- (7) The oxidation state of 13 is uncertain.
- (8) An alternative mechanism could involve a proton shift from the acid to the selenoxide oxygen followed by an S_N2 displacement.
- (9) This process is most conveniently accomplished via ozonolysis at -78°C in dichloromethane solution. See: G. Ayrey, D. Barnard and D. T. Woodbridge, <u>J. Chem. Soc.</u>, 2089 (1962).